US009292298B2

a2z United States Patent (10) Patent No.: US 9,292,298 B2
Lutz et al. (45) Date of Patent: Mar. 22, 2016
(54) DATA PROCESSING APPARATUS HAVING 2004/0006681 Al 1/2004 Moreno et al.
SIMD PROCESSING CIRCUITRY 2004/0249878 Al 12/2004 Luick
2006/0015703 Al 1/2006 Ramchandran et al.
. . . 2007/0185953 Al 8/2007 Prokopenko et al.
(71) Applicant: ARM LIMITED, Cambridge (GB) 2009/0172366 Al* 7/2009 Anderson ... GOGF 9/30032
712/225
(72) Inventors: David Raymond Lutz, Austin, TX (US); 2010/0095087 Al 4/2010 Eichenberger et al.
Neil Burgess, Austin, TX (US) 2010/0095098 Al 4/2010 Gschwind
2013/0275727 Al* 10/2013 Abraham GOG6F 9/3001
o - . 712/221
(73) ASSlgnee' ARM lelted’ CMbrldge (GB) 2014/0013082 Al 3k 1/20 14 Agarwal """"""" G06F 9/30032
712/204
(*) Notice: Subject to any disclaimer, the term of this 2015/0043729 A1* 2/2015 Gopal ..o HO4I. 9/0625
patent is extended or adjusted under 35 380/29
U.S.C. 154(b) by 438 days.
FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/936,576
EP 0 067 667 12/1982
(22) Filed: Jul. 8, 2013 * cited by examiner
(65) Prior Publication Data Primary Examiner — Hyun Nam
US 2015/0012724 A1 Jan. 8, 2015 (74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.
(51) Int.CL (57) ABSTRACT
GO6F 7/38 (2006.01) . . .
GOGF 15/00 2006.01 A data processing apparatus has permutation circuitry for
(o erforming a permutation operation for changing a data ele-
GOGF 9/38 (2006.01) periorming a p peratior Sing
5 US. Cl ment size or data element positioning of at least one source
(¢2) Us.Cl. operand to generate first and second SIMD operands, and
CPC .. GOG6F 9/3887(2013.01) SIMD o circuitry f formi SIMD .
58) Field of Classification Search processing circuitry for performing a operation
(y i y) on the first and second SIMD operands. In response to a first
CPC oo GOGE 5/30036; G(/)6F 9 .30032 ° G(;6F SIMD instruction requiring a permutation operation, the
L 9/3885; H04N 19/44 instruction decoder controls the permutation circuitry to per-
See application file for complete search history. form the permutation operation to generate the first and sec-
. ond SIMD operands and then controls the SIMD processing
(6 References Cited circuitry to perform the SIMD operation using these oper-
U.S. PATENT DOCUMENTS ands. In response to a second SIMD instruction not requiring
a permutation operation, the instruction decoder controls the
4,785,393 A 11/1988 Chuetal. SIMD processing circuitry to perform the SIMD operation
g%%g’%g g} ‘1‘; 588 é Bu})ez’ fit al. using the first and second SIMD operands identified by the
338, ol et al. : . g
6718504 BL* 42004 Coombs HO3M 13/2957 1n§tmct10n, without passing them via the permutation cir:
712/E9.017 ~ cuiry.
2002/0026570 Al* 2/2002 Shimizu GOGF 9/30025
712/225 23 Claims, 7 Drawing Sheets

processing circuitry

SIMD | A
unit
2f permute
unit -

4
d instruction | -6
decoder
10
12
-8

registers

U.S. Patent Mar. 22, 2016 Sheet 1 of 7 US 9,292,298 B2
processing circuitry L~ instruction 6
decoder
SIMD /’10
unit
S ermute —12
2 P unit - registers -8
FIG. 1
12 12 12 12 12 12 121 12-0
2 2 2 2 2 2 2 2
op1
12 112 (12 |12 (12 |12 |12-1|12-0
I/ I/ I/ l/ I/ !/ (/ (/
op2
LN EE BE T BE B BC X B I + - + \10
- ’ /- - - - 7’ i
14 | 14 | 14 | 14 | 14 | 14 | 14-1]| 14-0
res
Vi yJ Y Z Vi Vi Vi Vi
7 7 7 7 7 7 7 7
16 16 16 16 16 16 16 16

U.S. Patent Mar. 22, 2016 Sheet 2 of 7 US 9,292,298 B2
A B
sign extend sign extend
Ay e e e e e B
op1 op2
12
FIG. 3
A |OpA3|OpA.2|OpA.1|OpA0| RegisterM
+ + + +
30~/ B[OpB3[OpB2[OpB.1]OpBO| RegisterN
opA.3: regM.3 — regM.3 0pB.3: regN.3 — regM.1
opA.2:regM.2 — regN.3 opB.2: regN.2 — regN.1
opA.1: regM.1 — regM.2 opB.1: regN.1 — regM.0
opA.0: regM.0 — regN.2 0pB.0: regN.0 — regN.0
op1]OpA.3| OpA.1]|OpB.3|OpB.1 Register M
+ + + +
40] op2| OpA.2|OpA.0|OpB.2|OpB.0| Register N

FIG. 4A

U.S. Patent Mar. 22, 2016 Sheet 3 of 7 US 9,292,298 B2

A |OpA.1|OpA0| Register M

B |OpB.1|OpB.0| RegisterN

op1|OpA.1|OpB.1 Register M

op2|OpA.0|OpB.0| Register N

FIG. 4B

A | OpA.7| OpA.6 | OpA.5 | OpA.4 | OpA.3| OpA.2 | OpA.1| OpA.0 | Register M

B | OpB.7 | OpB.6 | OpB.5 | OpB.4 | OpB.3| OpB.2 | OpB.1] OpB.0 | Register N

op1]|OpA.7 | OpA.5| OpA.3 | OpA.1]| OpB.7 | OpB.5 | OpB.3 | OpB.1 | Register M

op2| OpA.6 | OpA.4 | OpA.2 | OpA.0 | OpB.6 | OpB.4 | OpB.2 | OpB.0 | Register N

FIG. 4C

U.S. Patent

op1

op2

Mar. 22, 2016 Sheet 4 of 7 US 9,292,298 B2
M bits M bits
A | OpA.1]1OpA.0
+ +
B |OpB.1|OpB.0
~ Nbits ~ Nbits
op1 | s(A.1) | OpA.1] s(A.0) | OpA.0
+ + + +
op2 | s(B.1) | OpB.1] s(B.0) | OpB.0
FIG. 5A
M bits M bits M bits M bits
A |OpA.3]OpA.2] OpA.1|OpA.0
+ + + +
B [OpB.3|OpB.2|OpB.1|0OpB.0
- Nbits ~ Nbits ~ Nbits ~ Nbits
s(A.3) | OpA.3 | s(A.2) | OpA.2| s(A.1) | OpA.1] s(A.0) | OpA.0
+ + + + + + + +
s(B.3) | OpB.3| s(B.2) | OpB.2| s(B.1) | OpB.11 s(B.0) | OpB.0

FIG. 5B

U.S. Patent Mar. 22, 2016 Sheet 5 of 7 US 9,292,298 B2

M bits M bits M bits M bits M bits M bits
A |OpA.1]1OpA.0 A |OpA.3|OpA.2|OpA.1]|OpA.0
 Nbits . N bits . N bits _
T T + + + +
op2 | s(A.0) | OpA.0 op2 | s(A.2) | OpA.2 | s(A.0) | OpA.0
FIG. 6A FIG. 6B

Mbits M bits Mbits Mbits Mbits M bits M bits M bits

e e e e o ey

A | OpA.7 | OpA.6 | OpA.5]| OpA.4 | OpA.3| OpA.2| OpA.1]OpA.0

|

N bits N bits N bits N bits

-t g - —

op1 | s(A.7) | OpA.7 | s(A.5) | OpA.5] s(A.3) | OpA.3| s(A.1) | OpA.1
+ + + + + + + +
op2 | s(A.6) | OpA.6 | s(A.4) | OpA.4|s(A.2) |OpA.2| s(A.0) | OpA.0

FIG. 6C

U.S. Patent Mar. 22, 2016 Sheet 6 of 7 US 9,292,298 B2

N bits N bits N bits
A OpA.0 A OpA.1 OpA.0
M bits M bits M bits
B OpB.0 B|OpB.1]|OpB.0
\ N .
N bits ‘ . N bits . N bits _
op1 OpA.0 op1 OpA.1 OpA.0
+ + + +
+ +
op2[s(B.0) [OpB0 op2 | s(B.1) | OpB.1] s(B.0) | OpB.0
FIG. 7A FIG. 7B
- Nbits ~ Nbits ~ Nbits ~ Nbits
A OpA3 OpA.2 OpA.1 OpA.0
M bits M bits M bits M bits
B|OpB.3|0pB.2|OpB.1|0pB.0
~ Nbits ~ Nbits ‘lA Nbits ~ Nhbits
op1 OpA.3 OpA.2 OpA.1 OpA.0
+ + + + + + + +
op2 | s(B.3) | OpB.3|s(B.2) [OpB.2| s(B.1) | OpB.1| s(B.0) | OpB.0
FIG. 7C
A OpA3 OpA.2 OpA.1 OpA.0
B OpB.3 OpB.2 OpB.1 OpB.0
op1 OpA.2 OpA.2 OpA.2 OpA.2
+ + + +
op2 OpB.3 OpB.2 OpB.1 OpB.0

FIG. 8

U.S. Patent Mar. 22,2016 Sheet 7 of 7 US 9,292,298 B2
SIMD SIMD
| permute _~ 54 instruction _~92 instruction .~ 50
cycle instruction (no permute (permute
required) required)
permute apply SIMD permute
0 A&Bto to op1/op2 A&Bto

generate op1/op2

to generate res

generate op1/op2

FIG. 9

apply SIMD
to op1/op2
to generate res

US 9,292,298 B2

1
DATA PROCESSING APPARATUS HAVING
SIMD PROCESSING CIRCUITRY

BACKGROUND TO THE INVENTION

1. Field of the Invention

The present invention relates to the field of data processing.
More particularly, the invention relates to a data processing
apparatus having single instruction multiple data (SIMD)
processing circuitry.

2. Background

A data processing apparatus may have SIMD processing
circuitry for performing a SIMD operation on first and second
operands comprising multiple data elements. The SIMD pro-
cessing circuitry has several parallel lanes of processing
which each perform a particular operation on corresponding
data elements of the first and second operands. For example,
the first and second operands may each comprise 32-bit data
values, with each operand including four 8-bit data elements.
A SIMD addition operation may perform four 8-bit additions
in parallel on each pair of 8-bit data elements.

Sometimes, the order in which the data elements appear
within the operands may not be the same as the order in which
the data elements are to be combined by the SIMD operation,
and so it may be necessary to perform some rearrangement of
data elements prior to performing the SIMD operation. The
present technique seeks to improve the implementation of
such rearrangements to improve the performance of SIMD
processing operations.

SUMMARY OF THE INVENTION

Viewed from one aspect, the present invention provides a
data processing apparatus comprising:

single instruction multiple data (SIMD) processing cir-
cuitry configured to perform a SIMD operation on first and
second SIMD operands comprising a plurality of data ele-
ments, the SIMD processing circuitry having a plurality of
parallel processing lanes for processing corresponding data
elements of the first and second SIMD operands;

permutation circuitry configured to perform a permutation
operation on at least one source operand comprising a plural-
ity of source data elements to generate said first and second
SIMD operands, said permutation operation generating at
least one of said first and second SIMD operands with at least
one of a different data element size and a different data ele-
ment positioning to said at least one source operand; and

an instruction decoder configured to decode SIMD instruc-
tions requiring the SIMD operation to be performed by the
SIMD processing circuitry;

wherein in response to a first SIMD instruction requiring
the permutation operation and identifying the at least one
source operand, the instruction decoder is configured to con-
trol the permutation circuitry to perform the permutation
operation on the at least one source operand to generate the
first and second SIMD operands, and to control the SIMD
processing circuitry to perform the SIMD operation using the
first and second SIMD operands generated by the permuta-
tion circuitry; and

in response to a second SIMD instruction not requiring the
permutation operation and identifying the first and second
SIMD operands, the instruction decoder is configured to con-
trol the SIMD processing circuitry to perform the SIMD
operation using the first and second SIMD operands identi-
fied by the second SIMD instruction, without passing the first
and second SIMD operands via the permutation circuitry.

10

15

20

25

30

35

40

45

50

55

60

65

2

Existing SIMD processing units typically have an initial
stage for performing a rearrangement operation on two input
operands to generate SIMD operands with a different data
element ordering compared to the input operands, so that a
subsequent processing stage can then perform a SIMD opera-
tion on the rearranged operand. Even if a rearrangement is not
required, the input operands would still be passed through the
rearrangement stage without changing the positions of the
data elements. However, this typically means that two pro-
cessing cycles are required for performing all SIMD opera-
tions, one for performing the rearrangement and another for
performing the SIMD operation itself. The first cycle is
largely dedicated to multiplexing the data elements of the
input operands so that they are aligned correctly for the SIMD
operation in a second or further processing cycle. However,
the inventors of the present technique realized that this align-
ment cycle is unnecessary for many SIMD instructions. Nev-
ertheless, in conventional apparatuses all SIMD instructions
pay the penalty for the element rearrangement. Therefore,
most existing SIMD operations require more cycles to
execute than they need to.

In contrast, the present technique provides separate permu-
tation circuitry for performing a permutation operation for
changing a data element ordering and/or data element size of
the data elements, and SIMD processing circuitry for per-
forming the SIMD operation. The permutation circuitry and
SIMD processing circuitry can be controlled independently
by an instruction decoder so that a first SIMD instruction
which requires both permutation and a SIMD operation is
executed using the permutation circuitry and the SIMD pro-
cessing circuitry, while a second SIMD instruction which
does not require any permutation is performed using the
SIMD processing circuitry alone, without passing its first and
second SIMD operands via the permutation circuitry. Hence,
the second SIMD instruction is not penalized by the permu-
tation required by the first SIMD instruction. In practice, most
SIMD operations do not require permutation and so on many
occasions the present technique enables a performance
improvement. Often, the second SIMD instruction can be
performed during a single processing cycle. That is, in con-
trast to previous implementations in which the permutation
operation and the SIMD operation together correspond to a
single micro-operation which cannot be split up, in the
present technique the permutation operation may be isolated
from the SIMD operation to provide two separate micro-
operations which can be scheduled independently.

This technique is counterintuitive because one would
expect that the permutation operation would only be required
when a subsequent SIMD operation is to be performed and so
therefore it is not apparent that providing the permutation
operation as an independent micro-operation would be use-
ful. As the SIMD operation would generally follow the per-
mutation operation, existing systems combined the permuta-
tion operation and the SIMD operation into a single multi
cycle operation. However, the inventors of the present inven-
tion recognized that in fact the SIMD operation will often be
needed on its own, without the permutation operation. If the
permutation and SIMD operations are combined in a single
operation, the requirement to occasionally perform a permu-
tation operation before a SIMD operation penalizes all SIMD
operations, which is unnecessary. By isolating the permuta-
tion operation from the SIMD operation, the second SIMD
instruction can be performed in fewer processing cycles than
the first SIMD instruction to reduce the average number of
cycles taken to process SIMD instructions.

An instruction decoder may control whether a particular
SIMD instruction is performed using both the permutation

US 9,292,298 B2

3

circuitry and the SIMD processing circuitry or using the
SIMD processing circuitry alone. For example, the first and
second SIMD instructions may have different opcodes,
allowing the instruction decoder to distinguish which instruc-
tion requires a permutation operation. Alternatively, the first
and second SIMD instructions may have the same opcode but
may have a field specifying whether a permutation is
required, and what type of permutation.

The instruction decoder may be implemented in various
ways. The instruction decoder may be a SIMD-only decoder
which is solely for decoding SIMD instructions, with another
instruction decoder provided for decoding other kinds of
instructions. Alternatively, a single instruction decoder may
decode both SIMD instructions and non-SIMD instructions.
The instruction decoder may control the permutation cir-
cuitry and SIMD processing circuitry directly with signals
sent from the instruction decoder to the permutation circuitry
or SIMD processing circuitry, or the instruction decoder may
indirectly control the permutation circuitry or SIMD process-
ing circuitry by including indications in the decoded instruc-
tions which control other circuitry (e.g. an issue stage of a
pipeline) to determine whether the permutation circuitry
should be used for a particular SIMD instruction.

To allow SIMD instructions which do not require a permu-
tation to be performed as quickly as possible, the SIMD
processing circuitry may keep all its processing operations
strictly within the same SIMD processing lane. Hence, the
SIMD processing circuitry may not support the permutation
operation. Each of the parallel processing lanes of the SIMD
processing circuitry may only process data elements which
appear at a predetermined data element position within the
first and second SIMD operands as received by the SIMD
processing unit, and cannot rearrange the data elements or
process data elements appearing in the received operands at
data element positions corresponding to other parallel pro-
cessing lanes. By preventing cross-lane switching in the
SIMD processing unit, this avoids the performance penalty
incurred in previous systems in which some processing time
is required for the SIMD processing circuitry to determine
which data elements should be processed by each lane.

The data elements of the first and second SIMD operands
may have one of a plurality of different data element sizes.
The data element size, and number of data elements, used for
a given SIMD operation may be selected based on a param-
eter of the SIMD instruction being executed. For a given data
element size, a corresponding configuration of processing
lanes may be set up so that each lane performs a parallel
operation on one data element from the first SIMD operand
and one data element from the second SIMD operand. For
example, the SIMD processing circuitry may support pro-
cessing lanes for handling eight pairs of 8-bit data elements,
four pairs of 16-bit data elements, two pairs of 32-bit data
elements, or one pair of 64-bit data elements.

The permutation circuitry may be able to perform a plural-
ity of different types of permutation operation. The particular
permutation performed may be selected based on a parameter
of the first SIMD instruction being executed. For example,
different opcodes may be allocated to instructions represent-
ing different types of permutation operation, with the type of
permutation operation to be performed being determined
based on the opcode. Alternatively, instructions with different
permutation operations may share the same opcode, with
another field of the instruction representing the permutation
to be performed.

In general, the permutation operation may receive at least
one source operand and generate first and second SIMD oper-
ands to be processed by a subsequent SIMD operation. The

10

15

20

25

30

35

40

45

50

55

60

65

4

permutation operation may generate at least one of the first
and second SIMD operands with a different data element size
and/or data element positioning to the at least one source
operand. For some permutation operations, two source oper-
ands may be provided and converted into two SIMD oper-
ands.

In one example, the permutation circuitry may perform an
element rearrangement permutation operation which maps at
least some of the source data elements to different data ele-
ment positions in the first and second SIMD operands. This is
especially useful when there are two source operands, since
the element rearrangement can change which elements are
paired together for the subsequent SIMD operation. A par-
ticularly useful example is a pairwise element rearrangement
for mapping a pair of neighboring source data elements of the
least one source operand to corresponding data element posi-
tions in the first and second SIMD operands respectively.
Hence, data elements which, if the SIMD operation was
applied to the original source operands, would not have been
added together because they would be in the same operand,
can be rearranged so that they are now added together. A
pairwise rearrangement can be useful for determining a sum
of a list of data values. Previous SIMD operations may add
together portions of the list to produce a SIMD operand
having multiple data elements, each data element correspond-
ing to the sum of different portions of the list. By performing
a pairwise element rearrangement prior to another SIMD
operation, the partial sum values can be placed in correspond-
ing data element positions of the first and second SIMD
operands, so that they can be added together. By repeating the
pairwise permutation and SIMD addition a number of times,
eventually all the data values in the list can be added together.

In another example, the permutation circuitry may perform
an element extending permutation operation which generates
at least one of the first and second SIMD operands with a
larger data element size than at least one source operand.

The element extending operation may be performed in
different ways. In one example, each data element in the
extended SIMD operand may be generated by setting a first
portion of the data element to the data value of a correspond-
ing source data element and filling a second portion of the
data element with a sign-extension of the data value of the
corresponding source data element (or a zero-extension if
unsigned values are used). Typically, the second portion will
be more significant than the first portion. In a sign extension,
the second portion is filled with bits having the same value as
a sign bit of the original data value of the corresponding
source data element, while in a zero-extension, the second
portion is filled with bits having a value of zero. In this way,
asmaller source data element can be inserted into a larger data
element of first or second SIMD operand with the remaining
portion sign- or zero-extended to preserve its original
numeric value.

When performing element extension, it is not essential for
all source data elements of the at least one source operand to
be mapped to corresponding data elements within one of the
SIMD operands. As a result of extending the size of the data
elements, there may not be space for all of the source data
elements, and so some may need to be discarded. To allow all
the original source data elements to be processed, it may be
necessary to perform multiple SIMD operations, each SIMD
operation operating on extended versions of a subset of data
elements from the original source operand.

Inone example, the element extending operation may com-
prise element lengthening in which first and second source
operands having M-bit data elements are converted to first
and second SIMD operands having N-bit data elements,

US 9,292,298 B2

5

where N>M. Hence, both the first and second source oper-
ands may be extended in a corresponding manner, with the
subsequent SIMD operation being performed on the N-bit
SIMD operands to produce a result value having N-bit data
elements.

Alternatively, an element widening permutation operation
may be performed in which one of the source operands has its
data elements extended but the other source operand is not
extended. For example, this can be useful in order to perform
a SIMD operation on source operands having different data
element sizes. The widening permutation operation can
extend the data elements of the source operand having the
smaller data element size, to match the larger data element
size of the other source operand, before then performing a
SIMD operation on the SIMD operands having correspond-
ing data element sizes.

Also, a permutation operation may perform both an ele-
ment extension and an element rearrangement, to change both
the data element size and the data element positioning when
mapping from at least one source operand to the SIMD oper-
ands. For example, a pairwise rearrangement-extension
operation may operate on a source operand having M-bit data
elements to generate first and second SIMD operands having
N-bit data elements, with the extended data elements corre-
sponding to neighbouring source data elements of the source
operand being placed in corresponding positions of the first
and second SIMD operands.

Another type of permutation operation which can be per-
formed by the permutation circuitry is a scalar-by-element
permutation operation performed on two source operands to
map one data element of the first source operand to each of the
data elements of the first SIMD operand and to map respec-
tive data elements of the second source operand to corre-
sponding data elements of the second SIMD operand. Hence,
the second source operand may be mapped directly to the
second SIMD operand, while the same data element of the
first source operand may be duplicated in each of the lanes of
the first SIMD operand. This allows the subsequent SIMD
operation to pair the duplicated data element of the first
source operand with each of the data elements of the second
source operand. For example, this can be used to combine
each element of a vector quantity with a scalar value. If
desired, the scalar-by-element permutation operation may
also include extending the data element size by lengthening or
widening as discussed above.

The data values represented by each data element may be
integer values or floating point values.

The SIMD operation comprises each of the parallel pro-
cessing lanes performing a processing operation on a data
element of the first SIMD operand and a corresponding data
element of the second SIMD operand. The processing opera-
tion may comprise many different kinds of operation. For
example, the processing operation may comprise adding or
subtracting the corresponding data elements, determining a
minimum or maximum value of the corresponding pair of
data elements, determining an absolute difference between
the data elements, or determining an absolute difference
between the data elements followed by adding the absolute
difference to a value stored in a storage location (absolute
difference with accumulate). Each of these processing opera-
tions may correspond to different instructions within an
instruction set, with each instruction having different ver-
sions, some of which require permutation and some of which
do not require permutation. The versions requiring permuta-
tion can be handled using both the permutation circuitry and
the SIMD processing circuitry, while the versions not requir-
ing permutation can be processed faster using the SIMD

25

40

45

6

processing circuitry. It will be appreciated that many other
kinds of processing operation could be performed by the
SIMD processing circuitry.

The permutation circuitry may provide the generated first
and second SIMD operands directly to the SIMD processing
circuitry. Alternatively, the permutation circuitry may write
the generated first and second SIMD operands to a data store,
such as a register bank, and the SIMD processing unit can
then read the generated SIMD operands from the data store.
The first and second SIMD instructions may specify the
respective source operands or SIMD operands using register
identifiers of registers of the register bank.

Viewed from another aspect, the present invention pro-
vides a data processing apparatus comprising:

single instruction multiple data (SIMD) processing means
for performing a SIMD operation on first and second SIMD
operands comprising a plurality of data elements, the SIMD
processing means having a plurality of parallel processing
lane means for processing corresponding data elements of the
first and second SIMD operands;

permutation means for performing a permutation operation
on at least one source operand comprising a plurality of
source data elements to generate said first and second SIMD
operands, said permutation operation generating at least one
of'said first and second SIMD operands with at least one of a
different data element size and a different data element posi-
tioning to said at least one source operand; and

instruction decoding means for decoding SIMD instruc-
tions requiring the SIMD operation to be performed by the
SIMD processing means;

wherein in response to a first SIMD instruction requiring
the permutation operation and identifying the at least one
source operand, the instruction decoding means is configured
to control the permutation means to perform the permutation
operation on the at least one source operand to generate the
first and second SIMD operands, and to control the SIMD
processing means to perform the SIMD operation using the
first and second SIMD operands generated by the permuta-
tion means; and

in response to a second SIMD instruction not requiring the
permutation operation and identifying the first and second
SIMD operands, the instruction decoding means is config-
ured to control the SIMD processing means to perform the
SIMD operation using the first and second SIMD operands
identified by the second SIMD instruction, without passing
the first and second SIMD operands via the permutation
means.

Viewed from a further aspect, the present invention pro-
vides a method of processing data comprising:

decoding single instruction multiple data (SIMD) instruc-
tions requiring a SIMD operation to be performed by SIMD
processing circuitry on first and second SIMD operands com-
prising a plurality of data elements, the SIMD processing
circuitry having a plurality of parallel processing lanes for
processing corresponding data elements of the first and sec-
ond SIMD operands;

in response to decoding a first SIMD instruction requiring
a permutation operation and identifying at least one source
operand comprising a plurality of source data elements, con-
trolling permutation circuitry to perform the permutation
operation on the at least one source operand to generate said
first and second SIMD operands with at least one of a differ-
ent data element size and a different data element positioning
to said at least one source operand, and controlling the SIMD
processing circuitry to perform the SIMD operation using the
first and second SIMD operands generated by the permuta-
tion circuitry; and

US 9,292,298 B2

7

in response to decoding a second SIMD instruction not
requiring the permutation operation and identifying the first
and second SIMD operands, controlling the SIMD process-
ing circuitry to perform the SIMD operation using the first
and second SIMD operands identified by the second SIMD
instruction, without passing the first and second SIMD oper-
ands via the permutation circuitry.

Viewed from another aspect, the present invention pro-
vides a data processing apparatus comprising:

permutation circuitry configured to perform, in response to
aprogram instruction, a permutation operation on at least one
source operand comprising a plurality of source data ele-
ments to generate at least one permuted operand comprising
a plurality of permuted data elements,

said permutation operation generating each of the plurality
of permuted data elements of said at least one permuted
operand by:
(1) setting a first portion of the permuted data element to a data
value of a corresponding source data element; and
(i1) filling a second portion of the permuted data element with
a sign-extension or zero-extension of said data value of said
corresponding source data element;

wherein for at least one permuted data element, the data
element position within said at least one permuted operand is
different to the data element position of the corresponding
source data element within said at least one source operand.

As discussed above, the permutation circuitry may provide
at least one permutation operation which provides both a
rearrangement of at least some data elements and a sign- or
zero-extension of the source data elements to produce per-
muted data elements having a larger data element size. This
avoids the need for separate instructions for performing these
operations and hence speeds up the permutation and any
corresponding SIMD operation.

Viewed from a further aspect, the present invention pro-
vides a data processing apparatus comprising:

permutation means for performing, in response to a pro-
gram instruction, a permutation operation on at least one
source operand comprising a plurality of source data ele-
ments to generate at least one permuted operand comprising
a plurality of permuted data elements,

said permutation operation generating each of the plurality
of permuted data elements of said at least one permuted
operand by:
(1) setting a first portion of the permuted data element to a data
value of a corresponding source data element; and
(i1) filling a second portion of the permuted data element with
a sign-extension or zero-extension of said data value of said
corresponding source data element;

wherein for at least one permuted data element, the data
element position within said at least one permuted operand is
different to the data element position of the corresponding
source data element within said at least one source operand.

Viewed from another aspect, the present invention pro-
vides a method of processing data comprising:

in response to a program instruction, performing a permu-
tation operation on at least one source operand comprising a
plurality of source data elements to generate at least one
permuted operand comprising a plurality of permuted data
elements,

said permutation operation generating each of the plurality
of permuted data elements of said at least one permuted
operand by:
(1) setting a first portion of the permuted data element to a data
value of a corresponding source data element; and

10

15

20

25

30

35

40

45

55

60

65

8

(i1) filling a second portion of the permuted data element with
a sign-extension or zero-extension of said data value of said
corresponding source data element;

wherein for at least one permuted data element, the data
element position within said at least one permuted operand is
different to the data element position of the corresponding
source data element within said at least one source operand.

The method of processing data may be performed using a
computer or other data processing apparatus having permu-
tation circuitry for performing the permutation operation.

The above, and other objects, features and advantages of
this invention will be apparent from the following detailed
description of illustrative embodiments which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a portion of a data process-
ing apparatus;

FIG. 2 illustrates a SIMD processing unit having parallel
processing lanes for performing operations in parallel on
respective data elements of first and second SIMD operands;

FIG. 3 illustrates an example of permutation circuitry for
performing a permutation operation on at least one source
operand to generate first and second SIMD operands;

FIGS. 4A to 4C illustrates an example of pairwise element
rearrangement,

FIGS. 5A and 5B illustrate examples of permutation opera-
tions for lengthening data elements;

FIG. 6A to 6C show examples of permutations for pair-
wise-lengthening of data elements;

FIGS. 7A to 7C illustrate examples of permutations for
widening one source’s operands to correspond to a data ele-
ment size of another source’s operand;

FIG. 8 illustrates an example of a scalar-by-element per-
mutation for mapping one selected data element of a first
source operand to each of the data elements of a first SIMD
operand; and

FIG. 9 illustrates a timing diagram showing an example of
the number of cycles required for executing a permutation
instruction and first and second SIMD instructions.

DESCRIPTION OF EXAMPLE EMBODIMENTS

FIG. 1 schematically illustrates a portion of a data process-
ing apparatus 2 comprising processing circuitry 4, an instruc-
tion decoder 6 and registers 8. It will be appreciated that the
processing apparatus 2 may also have other elements not
illustrated in FIG. 1 for conciseness. The instruction decoder
6 decodes instructions to be performed by the processing
circuitry 4. Results of instructions may be placed in the reg-
isters 8 where they can be read by the processing circuitry 4
when executing other instructions. The instruction decoder 6
may split some instructions into micro operations to be per-
formed by different units of the processing circuitry 4. Micro-
operations can be scheduled separately by the processing
circuitry 4. The processing circuitry 4 comprises a single
instruction multiple data (SIMD) processing unit 10 and a
permutation unit 12 which can perform separate micro-op-
erations in response to a single SIMD instruction. Alterna-
tively, a separate permutation instruction can be executed by
the permutation unit 12 and a separate SIMD instruction can
be executed by the SIMD processing unit 10.

FIG. 2 shows an example of the SIMD processing unit 10.
The SIMD processing unit 10 has several lanes of parallel
processing which process respective pairs of data elements 12
of SIMD operands op1, op2 in parallel with each other. In this

US 9,292,298 B2

9

example, the parallel processing lanes are represented by
adders 14 which each add one data element 12 from the first
SIMD operand opl and one data element 12 of the second
operand op2 and place the sum in a result data element 16 of
a result value res. The result value can be written back to
registers 8. Each lane of processing 14 can only process the
data elements 12 that are at a predetermined data element
position within the input operands op1, op2. For example, the
right hand adder 14-0 can only process the right-most ele-
ments 12-0 of the respective operands, the second adder 14-1
from the right processes the second right-most data elements
12-1, and so on. A lane of processing 14 cannot process data
elements from other lanes. Since there are no cross-lane
operations in the SIMD unit 10, lanes of processing 14 do not
need to take time to determine which data elements they
should process, and so SIMD processing by the SIMD unit 10
can be performed quickly. Each of the parallel operations can
be completed within a single cycle.

FIG. 2 shows an example where the two SIMD operands
opl, op2 have eight data elements and the result value also has
eight data elements. However, the SIMD unit 10 may be
configurable to process data values with different data ele-
ment sizes. For example, if the operands opl, op2 shown in
FIG. 2 are 64-bit values, FIG. 2 shows an example where eight
pairs of 8-bit data elements are processed by the respective
adders 14. In another configuration, the adders 14 can be
paired in twos to provide four lanes of processing, each lane
processing an addition of a pair of 16-bit data elements.
Similarly, the SIMD unit 10 may be configured to provide two
parallel lanes of processing each processing a pair of 32-bit
operands, or one lane processing a pair 64-bit data elements.
The data element size used for a given SIMD operation may
be selected based on a parameter of the instruction decoded
by the instruction decoder 6. While FIG. 2 shows an example
in which the SIMD operation performed in each lane of
processing is an addition, each lane could also process other
kinds of processing operation.

An example of the permutation unit 12 is shown in FIG. 3.
The permutation unit 12 is for performing a permutation
operation to change the arrangement of data elements. The
permutation unit 12 receives one or more source operand A, B
including a number of data elements and comprises multi-
plexing circuitry 20 which maps at least some of the data
elements to corresponding portions of the SIMD operands
opl, op2 to be processed by the SIMD unit 10. The multi-
plexing circuitry 20 can map any data element of the input
operands A, B to any portion of a data element of the SIMD
operands opl, op2. The control of the multiplexer is per-
formed based on the instruction decoded by the instruction
decoder 6. For example, the multiplexing circuitry 20 may
have a number of predetermined wire configurations connect-
ing different portions of the input operands A, B to portions of
the SIMD operands opl, op2. A particular configuration can
be selected based on a parameter of the decoded instruction.

While FIG. 3 shows two input operands A, B, for some
permutation operations both the SIMD operands opl, op2
may be determined based on data elements of a single source
operand A, with the B input to the multiplexing circuitry 20
being ignored. Also, the number of data elements and the size
of the data elements need not be the same between the source
operands and SIMD operands. As shown in FIG. 3, the mul-
tiplexing circuitry 20 may input sign extending bits 22 corre-
sponding to the respective source data elements and place the
sign bits in portions of the SIMD operands opl, op2. For a
signed value, the sign extension bits 22 are equal to the sign
bit of the corresponding source data element (0 for positive
values and 1 for negative values). On the other hand, if the

5

10

15

20

25

30

35

40

45

50

55

60

65

10

data values of the source operands A, B are unsigned, then the
sign bits can be 0 for all data elements. The sign extension bits
22 (or zero extension bits for unsigned values) are used for
lengthening or widening data elements so that the data ele-
ment size can be extended while maintaining the correct
numeric value for that data element.

FIG. 4A shows an example of a pairwise element rear-
rangement permutation operation that may be performed by
the permutation unit 12. As shown in portion 30 of FIG. 4A,
originally some registers M, N store two source operands A,
B each having four 16-bit data elements. A SIMD operation
can be performed on these operands in their current form by
using the SIMD unit 10 alone without the permutation unit 12
performing any permutation. In this case, element 0 of oper-
and A would be added to element 0 of operand B, element 1
of operand A would be added to element 1 of the operand B,
and so on, as shown in portion 30 of FIG. 4A.

However, it may be desired to add elements 3 and 2 of
operand A together, and perform similar pairwise additions of
neighbouring elements in the remainder of operands A and B.
This is shown in portion 40 at the bottom of FIG. 4A. To
achieve this, an element rearrangement is performed by the
permutation unit 12 to transfer the values between registers
using the sequence of transfers shown in FIG. 4A. That is, the
multiplexing circuitry 20 maps data elements of the source
operands A, B to different data element positions within the
SIMD operands opl, op2 so that the SIMD unit 10 can per-
form a SIMD operation to add different combinations of
elements together. Similarly, a pairwise permutation may be
provided for types of SIMD operation other than a SIMD
addition. FIGS. 4B and 4C show similar pairwise rearrange-
ments performed for operands having two and eight data
elements respectively. In the pairwise rearrangement shown
in FIGS. 4A to 4C, the number of data elements and the size
of data elements remains the same during the permutation.

FIGS. 5A and 5B show an example of a lengthening per-
mutation operation in which the data element size changes
during the permutation. The permutation unit 12 extends the
size of each data element within source operands A, B to
produce larger SIMD operands opl, op2. In this example,
each M-bit data element of the first and second source oper-
ands A, B is sign extended and mapped to a corresponding
position of the first and second SIMD operands op1, op2 to
form an N-bit data element (N>M). The sign extension
extends the original data value with bits having the same
value as the most significant bit of the data value. If the
original data value was unsigned then it would be zero-ex-
tended instead of sign-extended. Hence, the permutation unit
12 can generate SIMD operands with larger data elements
than the source operands. FIGS. 5A and 5B show examples of
enlarging operands having two and four data elements respec-
tively.

FIGS. 6A to 6C show another example of a permutation
operation 4 performing a pairwise-lengthening addition. In
this case, a single source operand A is provided, and the
positions of the respective data elements of the source oper-
and are rearranged in the SIMD operands op1, op2 as well as
being sign extended from M bits to N bits (N>M). The pair-
wise rearrangement places neighbouring M-bit elements of
the source operands at corresponding positions within the two
SIMD operands. For example, source data elements OpA.1
and OpA.0 of operand A are now at corresponding positions
in the same lane of the two SIMD operands op1, op2. Again,
zero-extension could be used instead of sign-extension for
unsigned values. FIGS. 6A, 6B and 6C show the pairwise-
lengthening for two, four and eight element operands respec-
tively.

US 9,292,298 B2

11

FIGS.7A to 7C show another example of a permutation for
widening data elements of one of a pair of source operands to
match the size of the data elements of the other source oper-
and. Inthis case source operand A is mapped directly to SIMD
operand opl, while source operand B has each M-bit data
element sign-extended (or zero-extended) and placed in a
corresponding location within the second SIMD operand
op2. This type of permutation allows operands A and B to be
combined using a single SIMD instruction despite having
different data element sizes. Each SIMD processing lane then
combines a corresponding pair of data elements of the first
and second SIMD operands opl, op2. FIGS. 7A-7C show an
example where this permutation is applied to source operands
having one, two or four data elements respectively.

FIG. 8 shows another example of a permutation operation.
In this case, source operand B is mapped directly to the
second SIMD operand op2. On the other hand, one element
(OpA.2 in this example) of source operand A is selected and
replicated in each of the lanes of the first SIMD operand opl.
By copying the same source data element into multiple lanes
of'the SIMD operand, a subsequent scalar-by-element vector
SIMD operation can combine each element of the vector
represented by op2 with a scalar quantity represented by the
duplicated element OpA.2 of opl.

While FIGS. 2 and 4A-8 show examples where the SIMD
operation performed in each processing lane is an addition of
corresponding data elements of the operands op1, op2, other
kinds of processing operation could also be performed. For
example, the present technique can be applied to any of the
following kinds of signed or unsigned SIMD instruction:

ADD: each processing lane adds two corresponding data
elements, with optional permutations including pair-
wise, lengthening, widening, and pairwise-lengthening;

SUB: each processing lane subtracts two corresponding
data elements, with optional permutations including
lengthening and widening;

MIN: each processing lane determines the minimum value
of'two corresponding data elements, with optional pair-
wise permutation;

MAX: each processing lane determines the maximum
value of two corresponding data elements, with optional
pairwise permutation;

ABD: each processing lane determines the absolute differ-
ence of two corresponding data elements, with optional
lengthening permutation;

ABA: each processing lane determines the absolute differ-
ence of two corresponding data elements and then accu-
mulates the absolute difference into a register, with
optional lengthening permutation.

Also, scalar-by-element permutation could also be applied to
all of these instructions. Many other types of processing
operation and permutation could also be performed.

FIG. 9 shows a timing diagram showing processing cycles
for performing different instructions. As shown in FIG. 9, a
first type of SIMD instruction 50 which requires a permuta-
tion operation is performed in two cycles, one cycle to per-
form the permutation and one cycle to perform the SIMD
operation on the operands opl, op2 generated using the per-
mutation.

Also, FIG. 9 shows a second type of SIMD instruction 52
for which no permutation is required. This instruction is pro-
cessed by the SIMDunit 10, which performs the SIMD opera-
tion directly on the operands opl, op2 specified by the
instruction 52, without passing these operands via the permu-
tation unit 12. This is in contrast to previous implementations
which would have passed the operands through a permutation
stage even if the SIMD instruction does not require a permu-

20

25

40

45

55

12

tation. Therefore, the present technique saves a processing
cycle and so the SIMD instruction 52 can now be performed
in one processing cycle. In practice, most SIMD instructions
are of the second type 52, and instructions 50 requiring a
permutation are rare. Therefore, the additional processing
cycle required by a permutation can be avoided for most
SIMD instructions, providing a significant performance sav-
ing.

FIG. 9 also shows a separate permute instruction 54 that
only requires a permutation operation to be performed, with-
out a subsequent SIMD operation. This instruction 54 can be
performed in a single cycle using the permutation unit 12.

Although illustrative embodiments of the invention have
been described in detail herein with reference to the accom-
panying drawings, it is to be understood that the invention is
not limited to those precise embodiments, and that various
changes and modifications can be effected therein by one
skilled in the art without departing from the scope and spirit of
the invention as defined by the appended claims.

We claim:

1. A data processing apparatus comprising:

single instruction multiple data (SIMD) processing cir-

cuitry configured to perform a SIMD operation on first
and second SIMD operands comprising a plurality of
data elements, the SIMD processing circuitry having a
plurality of parallel processing lanes for processing cor-
responding data elements of the first and second SIMD
operands;

permutation circuitry configured to perform a permutation

operation on at least one source operand comprising a
plurality of source data elements to generate said first
and second SIMD operands, said permutation operation
generating at least one of said first and second SIMD
operands with at least one of a different data element size
and a different data element positioning to said at least
one source operand; and

an instruction decoder configured to decode SIMD instruc-

tions requiring the SIMD operation to be performed by
the SIMD processing circuitry;

wherein in response to a first SIMD instruction requiring

the permutation operation and identifying the at least
one source operand, the instruction decoder is config-
ured to control the permutation circuitry to perform the
permutation operation on the at least one source operand
to generate the first and second SIMD operands, and to
control the SIMD processing circuitry to perform the
SIMD operation using the first and second SIMD oper-
ands generated by the permutation circuitry; and

in response to a second SIMD instruction not requiring the

permutation operation and identifying the first and sec-
ond SIMD operands, the instruction decoder is config-
ured to control the SIMD processing circuitry to perform
the SIMD operation using the first and second SIMD
operands identified by the second SIMD instruction,
without passing the first and second SIMD operands via
the permutation circuitry.

2. The data processing apparatus according to claim 1,
wherein the processing apparatus is configured to process the
second SIMD instruction in fewer processing cycles than the
first SIMD instruction.

3. The data processing apparatus according to claim 1,
wherein the SIMD processing circuitry does not support said
permutation operation.

4. The data processing apparatus according to claim 1,
wherein each parallel processing lane can only process data
elements appearing at a predetermined data element position
within the first and second SIMD operands as received by said

US 9,292,298 B2

13

SIMD processing circuitry, and cannot process data elements
appearing in the received first and second SIMD operands at
other data element positions.

5. The data processing apparatus according to claim 1,
wherein said data elements of said first and second SIMD
operands have one of a plurality of different data element
sizes.

6. The data processing apparatus according to claim 1,
wherein said permutation circuitry is configured to perform a
plurality of different types of said permutation operation.

7. The data processing apparatus according to claim 1,
wherein for at least one type of permutation operation, said
permutation circuitry is configured to perform said permuta-
tion operation on first and second source operands each com-
prising a plurality of source data elements to generate said
first and second SIMD operands.

8. The data processing apparatus according to claim 1,
wherein said permutation circuitry is configured to perform
an element rearrangement permutation operation to map at
least some of said plurality of source data elements to differ-
ent data element positions in said first and second SIMD
operands.

9. The data processing apparatus according to claim 8,
wherein said element rearrangement permutation operation
comprises a pairwise element rearrangement operation for
mapping a pair of neighbouring source data elements of said
at least one source operand to corresponding data element
positions in said first and second SIMD operands respec-
tively.

10. The data processing apparatus according to claim 1,
wherein said permutation circuitry is configured to perform
an element extending permutation operation to generate at
least one of said first and second SIMD operands with a larger
data element size than one of said at least one source operand.

11. The data processing apparatus according to claim 10,
wherein when performing said element extending permuta-
tion operation, said permutation circuitry is configured to
generate each data element of said at least one of'said first and
second SIMD operands by:

(1) setting a first portion of the data element to a data value

of a corresponding source data element; and

(ii) filling a second portion of the data element with a

sign-extension or zero-extension of said data value of
said corresponding source data element.

12. The data processing apparatus according to claim 10,
wherein said element extending permutation operation com-
prises an element lengthening permutation operation per-
formed on first and second source operands each having
M-bit source data elements to generate first and second SIMD
operands each having N-bit data elements, where M and N are
integers and N>M.

13. The data processing apparatus according to claim 10,
wherein said element extending permutation operation com-
prises an element widening permutation operation performed
on a first source operand having N-bit source data elements
and a second source operand having M-bit source data ele-
ments to generate first and second SIMD operands each hav-
ing N-bit data elements, where M and N are integers and
N>M.

14. The data processing apparatus according to claim 10,
wherein said element extending permutation operation com-
prises an element extending-and-rearranging permutation
operation performed on at least one source operand having
M-bit source data elements to map at least some of said source
data elements to different data element positions in said first

10

15

20

25

30

35

40

45

50

55

60

65

14

and second SIMD operands, said first and second SIMD
operands having N-bit data elements, where M and N are
integers and N>M.

15. The data processing apparatus according to claim 1,
wherein said permutation circuitry is configured to perform a
scalar-by-element permutation operation on first and second
source operands to generate said first and second SIMD oper-
ands,

said scalar-by-element permutation operation comprising

mapping a selected source data element of said first
source operand to each of the data elements of said first
SIMD operand, and mapping respective data elements
of said second source operand to corresponding data
elements of said second SIMD operand.

16. The data processing apparatus according to claim 1,
wherein said SIMD operation comprises each of the parallel
processing lanes performing a processing operation on said
corresponding data elements of said first and second SIMD
operands, said processing operation comprising one of:

adding said corresponding data elements;

subtracting one of said corresponding data elements from

the other of said corresponding data elements;
determining a minimum value of said corresponding data
elements;

determining a maximum value of said corresponding data

elements;

determining an absolute difference between the corre-

sponding data elements; and

determining an absolute difference between the corre-

sponding data elements and adding said absolute differ-
ence to a value stored in a storage location.
17. The data processing apparatus according to claim 1,
wherein said permutation circuitry is configured to write the
generated first and second SIMD operands to a data store.
18. The data processing apparatus according to claim 1,
wherein in response to a permutation instruction specifying
said at least one source operand and not requiring said SIMD
processing circuitry to perform said SIMD operation, said
instruction decoder is configured to control said permutation
circuitry to perform said permutation operation.
19. A data processing apparatus comprising:
single instruction multiple data (SIMD) processing means
for performing a SIMD operation on first and second
SIMD operands comprising a plurality of data elements,
the SIMD processing means having a plurality of paral-
lel processing lane means for processing corresponding
data elements of the first and second SIMD operands;

permutation means for performing a permutation operation
on at least one source operand comprising a plurality of
source data elements to generate said first and second
SIMD operands, said permutation operation generating
at least one of said first and second SIMD operands with
at least one of a different data element size and a differ-
ent data element positioning to said at least one source
operand; and

instruction decoding means for decoding SIMD instruc-

tions requiring the SIMD operation to be performed by
the SIMD processing means;

wherein in response to a first SIMD instruction requiring

the permutation operation and identifying the at least
one source operand, the instruction decoding means is
configured to control the permutation means to perform
the permutation operation on the at least one source
operand to generate the first and second SIMD operands,
and to control the SIMD processing means to perform
the SIMD operation using the first and second SIMD
operands generated by the permutation means; and

US 9,292,298 B2

15

in response to a second SIMD instruction not requiring the
permutation operation and identifying the first and sec-
ond SIMD operands, the instruction decoding means is
configured to control the SIMD processing means to
perform the SIMD operation using the first and second
SIMD operands identified by the second SIMD instruc-
tion, without passing the first and second SIMD oper-
ands via the permutation means.

20. A method of processing data comprising:

decoding single instruction multiple data (SIMD) instruc-
tions requiring a SIMD operation to be performed by
SIMD processing circuitry on first and second SIMD
operands comprising a plurality of data elements, the
SIMD processing circuitry having a plurality of parallel

processing lanes for processing corresponding data ele- 1

ments of the first and second SIMD operands;

in response to decoding a first SIMD instruction requiring
a permutation operation and identifying at least one
source operand comprising a plurality of source data
elements, controlling permutation circuitry to perform
the permutation operation on the at least one source
operand to generate said first and second SIMD oper-
ands with at least one of a different data element size and
a different data element positioning to said at least one
source operand, and controlling the SIMD processing
circuitry to perform the SIMD operation using the first
and second SIMD operands generated by the permuta-
tion circuitry; and

in response to decoding a second SIMD instruction not
requiring the permutation operation and identifying the
first and second SIMD operands, controlling the SIMD
processing circuitry to perform the SIMD operation
using the first and second SIMD operands identified by
the second SIMD instruction, without passing the first
and second SIMD operands via the permutation cir-
cuitry.

21. A data processing apparatus comprising:

permutation circuitry configured to perform, in response to
a program instruction, a permutation operation on at

least one source operand comprising a plurality of

source data elements to generate at least one permuted
operand comprising a plurality of permuted data ele-
ments,
said permutation operation generating each of the plurality
of permuted data elements of said at least one permuted
operand by:
(1) setting a first portion of the permuted data element to a data
value of a corresponding source data element; and

5

10

20

25

30

35

40

45

16

(i1) filling a second portion of the permuted data element with
a sign-extension or zero-extension of said data value of said
corresponding source data element;
wherein for at least one permuted data element, the data
element position within said at least one permuted oper-
and is different to the data element position of the cor-
responding source data element within said at least one
source operand.
22. A data processing apparatus comprising:
permutation means for performing, in response to a pro-
gram instruction, a permutation operation on at least one
source operand comprising a plurality of source data
elements to generate at least one permuted operand com-
prising a plurality of permuted data elements,
said permutation operation generating each of the plurality
of permuted data elements of said at least one permuted
operand by:
(1) setting a first portion of the permuted data element to a data
value of a corresponding source data element; and
(i1) filling a second portion of the permuted data element with
a sign-extension or zero-extension of said data value of said
corresponding source data element;
wherein for at least one permuted data element, the data
element position within said at least one permuted oper-
and is different to the data element position of the cor-
responding source data element within said at least one
source operand.
23. A method of processing data comprising:
in response to a program instruction, performing a permu-
tation operation on at least one source operand compris-
ing a plurality of source data elements to generate at least
one permuted operand comprising a plurality of per-
muted data elements,
said permutation operation generating each of the plurality
of permuted data elements of said at least one permuted
operand by:
(1) setting a first portion of the permuted data element to a data
value of a corresponding source data element; and
(i1) filling a second portion of the permuted data element with
a sign-extension or zero-extension of said data value of said
corresponding source data element;
wherein for at least one permuted data element, the data
element position within said at least one permuted oper-
and is different to the data element position of the cor-
responding source data element within said at least one
source operand.

